
Signal Processing and Communications

with MATLAB and Simulink

1

Giorgia Zucchelli

Application Engineer - MathWorks

Key Takeaways

� Quickly analyze and develop new algorithms with MATLAB

� Accurate system-level multi-domain analysis with Simulink

2

� Accurate system-level multi-domain analysis with Simulink

� With MATLAB and Simulink you can quickly design entire

systems with better performance

Motivations

� Quickly analyze and develop new algorithms with MATLAB

>> Evaluating innovative ideas is time-consuming

� Accurate system-level multi-domain analysis with Simulink

3

� Accurate system-level multi-domain analysis with Simulink

>> Modeling implementation constraints requires specific knowledge

� With MATLAB and Simulink you can quickly design entire

systems with better performance

>> Optimizing the tradeoff between reuse and innovation is

challenging

MATLAB for Signal Processing

� Digital Filter Design

� Fixed-point in MATLAB

� … and more

4

MATLAB for Signal Processing: What’s New

� Multirate Digital Filter Design

� Fixed-point in MATLAB for streaming applications

� … and more

5

Challenges: Digital Filter Design

� During design:

� Is it meeting the specs?

� During implementation:

� How can I minimize cost?

6

� How can I minimize cost?

� Which filter structure will be optimal?

� Will it work correctly on the target hardware?

� What can I trade off?

Digital Filter Design in MATLAB

� Design FIR and IIR filters

� Many frequency responses

� Optimized design methods

� Implement filters using various filter

7

� Implement filters using various filter

architectures

� Visualize filter response

� Export MATLAB filters into Simulink

for system-level simulation

Digital Filter Design Tradeoffs

� Example: high speed,

low pass decimation filter

Specifications:

8

Specifications:

Input sampling freq = 88.4kHz

Output sampling freq = 11.05kHz

Decimation factor = 8

Passband ripple = 0.1dB

Stopband attenuation = 90dB

Passband = 3000Hz

Stopband = 3200Hz

Takeaways: Digital Filter Design in MATLAB

� Different filter responses

� Many optimized design methods

� Control of the filter architecture

9

� Evaluation of tradeoffs between

performances, costs and specs

� Automation of the design process

� Rapid design iterations

� Visualization of filter characteristics

Challenges: Fixed-Point Design

� Dynamic analysis of data range

� Finite word length = quantization error

� Overflow (overload distortion)

� Underflow (granular noise)

10

� Underflow (granular noise)

� Algorithms supporting fixed-point data type

s … 32 16 8 4 2 1 1/2 1/4 1/8 1/16 1/32 …

7+1=8: 7 bit word length & 5 fractional

bits Range =[-4 3.9688) Step = 1/32

7+1=8 bit: 7 word length & 1 fractional bit

Range =[-64 63.5) Step =1/2

MATLAB for Fixed-Point

� Represent fixed-point data type

� Analyze quantization effects

� Built-in logging and visualizations

Accelerate execution of fixed-point code

11

� Accelerate execution of fixed-point code

� System objects for more fixed-point functions

New in R2010a: System Objects

� MATLAB objects that represent time-based and data-driven

algorithms, sources, and sinks

� System objects enable streaming in MATLAB

Support of fixed-point data type and automatic C code

12

� Support of fixed-point data type and automatic C code

generation

� Made available by:

� Signal Processing Blockset

� Video and Image Processing Blockset

� Communication Blockset

Work on all the

data at once…

MATLAB is Best at Batch Processing

All the data

13

Deliver all at once

Many Systems Demand Stream Processing

� All the data is not available at once
Incremental

delivery

All the data

14

� All the data is not available at once

� Limited memory footprint

� Real-time requirements

� Typical applications

� Communications simulation

� Audio / video processing

� Data acquisition

delivery

Example: Filtering of an Audio Stream

filename = 'dspafxf_8000.wav';

[audio Fs] = wavread(filename);

filt = fir1(40, 0.8, 'high');

audiofilt = filter(filt,1,audio);

wavplay(audiofilt,Fs);

15

wavplay(audiofilt,Fs);

Filtering in MATLAB

filename = ‘music.wav';

[audio Fs] = wavread(filename);

filt = fir1(40, 0.8, 'high');

audiofilt = filter(filt,1,audio);

wavplay(audiofilt,Fs);

Loads entire dataset

into workspace

“audio” data uses more

space than needed

16

Must wait for all data

to be processed

before listening to

results

Overall, code uses several

copies of the audio dataset

in memory

wavplay(audiofilt,Fs);
space than needed

(double vs. uint16)

Stream Processing in MATLAB Today

%% Streaming the MATLAB way

% set up initializations

filename = ‘music.wav';

Fs = 8000;

info = mmfileinfo(filename);

num_samples = info.Duration*Fs;

frame_size = 40;

Explicit state management

requires programmer to

manage details that

17

frame_size = 40;

bLP = fir1(12, 0.8, ‘low');

zLP = zeros(1,numel(bLP)-1);

output = zeros(1,num_samples);

%% Processing in the loop

index= 1;

while index < (num_samples-frame_size+1)

data = wavread(filename,[index index+frame_size-1]);

[datafilt, zLP] = filter(bLP,1,data,zLP);

output(index:index+frame_size-1) = datafilt;

index = index + frame_size;

end

wavplay(output,Fs);

manage details that

should be implicit

Indexing is tedious and

error prone

Need to maintain output buffer
because wavplay requires all

data before being called

%% Streaming with System Objects

% set up initializations

filename = ‘music.wav';

hFilter = dsp.DigitalFilter;

hFilter.TransferFunction = 'FIR (all zeros)';

hFilter.Numerator = fir1(12, 0.8, ‘low');

hAudioSource = dsp.AudioFileReader(filename, ...

Stream Filtering with System Objects

Initialize objects

before use

18

hAudioSource = dsp.AudioFileReader(filename, ...

'SamplesPerFrame',40, 'OutputDataType','double');

hAudioOut = dsp.AudioPlayer('SampleRate', 11050);

%% Processing in the loop

while ~isDone(hAudioSource)

data = step(hAudioSource);

datafilt = step(hFilter, data);

step(hAudioOut, datafilt);

end

Many ways to set object

properties

Source and FIR filter

states are implicit

“In-the-loop” code is

much simpler

No management of

indexing
Audio player runs in-the-loop

with the current frame,

avoiding lengthy buffer

Batch Processing

� Load the entire video file and process it all at once

191919

Source

Batch

Video

Algorithm

Memory

Ease of Use
MATLAB

Traditional Stream Processing in MATLAB

� Load a video frame and process it before moving on to

the next frame

� Manually maintain indexing, buffering, states

20

MATLAB

Stream

Processing
Stream

Source

Ease of Use

Memory

Stream Processing with System Objects

� Load a video frame and process it before moving on to

the next frame

� Implicit indexing, buffering, handling of states

21

MATLAB

Stream

Processing
Stream

Source

Ease of Use

Memory

Fixed-Point Algorithms in MATLAB

� Represent fixed-point data

types in MATLAB as ‘fi’ objects

� Run simulation in floating-point

or fixed-point modes using

22

or fixed-point modes using

data type override

� Log min, max and overflow

Takeaways: Fixed-Point System Objects

� Stream processing in MATLAB

� Easier to write and be correct the first time

� Improves handling of large data sets

� Fixed-point modeling

23

� Fixed-point modeling

� All relevant objects support fixed-point data types

� Compatible with Fixed-Point Toolbox

� C-code generation

� Most objects support code generation using EMLC

� Compatible with Embedded MATLAB

Simulink for Signal Processing

� Systems with complex timing

� System-level simulation

� … and more

24

Simulink for Signal Processing: What’s New

� Mixed-signal systems with complex timing

� System-level simulation including RF

� … and more

25

Challenges: Mixed-Signal Systems

� Anticipate physical constraints
� Analog and digital electronics

� Complex timing:
� Continuous and discrete timing

26

� Continuous and discrete timing

� Feedback loops

� Threshold crossing

� Asynchronous behavior

� Concurrent paths

Mixed-Signal Modeling with Simulink

� Design embedded systems:
� Use the most suitable

modeling approach

� Anticipate physical
impairments (mixed-signal)

27

impairments (mixed-signal)

� Define the system architecture

� Verify embedded systems:
� Analyze close-loop behavior

Takeaways: Mixed-Signal Simulation

� Simulation of continuous and
discrete signals

� Multi-rate digital signals with
arbitrary sample rates

28

arbitrary sample rates

� Complex timing
� Built-in notion of concurrency

� Detect zero-crossings and
discontinuities

� Enable feedback loops

� Asynchronously triggered blocks

� Share the MATLAB workspace

Challenges: RF System-Level Simulation

� Model RF front-ends:
� Without being an expert

� With acceptable simulation speed

� Integrate baseband and RF simulation

29

� Integrate baseband and RF simulation
� Develop a system-level view

New in R2010b: SimRF

� Circuit envelope analysis
� Multi-carrier systems and arbitrary architectures

� Equivalent baseband models

Simulation

Speed
Fidelity

30

� Equivalent baseband models
� Single carrier super-heterodyne cascaded systems

(former RF Blockset technology)

� Complex baseband models
� Mathematical analytical models

Former RF Blockset Technology
Single carrier simulation of cascaded RF systems

� Linear elements are modeled with baseband-complex

equivalent descriptions

� Nonlinear elements are described by means of (static)

AM/AM – AM/PM characteristics

31

AM/AM – AM/PM characteristics

� Elements are cascaded for fast single carrier simulations

in the time domain

Modeling Paradigm: RF Blockset
From passband-real signal to baseband-complex equivalent signal

… MHz …GHz … fc

Bandwidth = 1/Ts0

Pass-band

transfer function

32

RF Blockset

0

-0.5/Ts +0.5/Ts

Baseband-complex equivalent

transfer function

Number of sub bands (freq. resolution)

equals length of impulse response

frequency

Baseband equivalent

time-domain

impulse response
time

0

New SimRF Technology
Multi-carrier simulation for arbitrary topology of RF systems

� Use circuit-envelope analysis for multi-carrier linear and

non-linear elements
� Extend in band analysis to multiple bands

� Based on Simscape to model networks of physical

33

� Based on Simscape to model networks of physical

components
� Possibility to build arbitrary topologies

� Possibility to probe within the network

� Enables extended interferers and spurs analysis at
system-level

Simulation Paradigm: SimRF
Envelope analysis of the modulations centered on multiple carriers

… MHz …GHz … fc1

Circuit-envelope

analysis

0

Complex envelope of

modulated input signals fc2

frequency

34

SimRF

analysis

Complex envelope response

around selected carrier

… MHz …GHz …

0 frequency

fc1 fc2fc2-fc1 fc2+fc1

… MHz …GHz …

frequency

fc2+fc1

0

RF Modeling with Simulink

� Design embedded systems:
� Use the best modeling approach

� Anticipate physical impairments
(RF)

Define the system hierarchy

35

� Define the system hierarchy

� Verify embedded systems:
� Analyze results in streaming

conditions

� Evaluate system-level
performances

Takeaways: RF Modeling with Simulink

� Complex hierarchical model
description

� Streaming capabilities with
frame-based processing

36

frame-based processing
� Make use of MATLAB for matrix

processing

� Use Embedded MATLAB
� Increase expressivity

� Use of legacy-code

Design and Implement Signal Processing

Systems with MATLAB and Simulink

� Algorithm design

� Fast simulation

� Architecture exploration

� Targeting implementation

37

� Targeting implementation

� Verification and testing

� Rapid prototyping

Conclusions

� Quickly analyze and develop new algorithms with MATLAB

� Accurate system-level multi-domain analysis with Simulink

38

� Accurate system-level multi-domain analysis with Simulink

� With MATLAB and Simulink you can quickly design entire

systems with better performance

