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Key Takeaways

� Quickly analyze and develop new algorithms with MATLAB

� Accurate system-level multi-domain analysis with Simulink
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� Accurate system-level multi-domain analysis with Simulink

� With MATLAB and Simulink you can quickly design entire 

systems with better performance



Motivations

� Quickly analyze and develop new algorithms with MATLAB

>> Evaluating innovative ideas is time-consuming

� Accurate system-level multi-domain analysis with Simulink
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� Accurate system-level multi-domain analysis with Simulink

>> Modeling implementation constraints requires specific knowledge

� With MATLAB and Simulink you can quickly design entire 

systems with better performance

>> Optimizing the tradeoff between reuse and innovation is 

challenging



MATLAB for Signal Processing

� Digital Filter Design

� Fixed-point in MATLAB

� … and more
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MATLAB for Signal Processing: What’s New

� Multirate Digital Filter Design

� Fixed-point in MATLAB for streaming applications

� … and more
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Challenges: Digital Filter Design

� During design:

� Is it meeting the specs?

� During implementation:

� How can I minimize cost?
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� How can I minimize cost?

� Which filter structure will be optimal?

� Will it work correctly on the target hardware?

� What can I trade off?



Digital Filter Design in MATLAB

� Design FIR and IIR filters 

� Many frequency responses

� Optimized design methods

� Implement filters using various filter 
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� Implement filters using various filter 

architectures

� Visualize filter response

� Export MATLAB filters into Simulink 

for system-level simulation



Digital Filter Design Tradeoffs

� Example: high speed, 

low pass decimation filter

Specifications:
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Specifications:

Input sampling freq = 88.4kHz

Output sampling freq = 11.05kHz

Decimation factor = 8

Passband ripple = 0.1dB  

Stopband attenuation = 90dB

Passband = 3000Hz

Stopband = 3200Hz



Takeaways: Digital Filter Design in MATLAB

� Different filter responses

� Many optimized design methods

� Control of the filter architecture
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� Evaluation of tradeoffs between 

performances, costs and specs 

� Automation of the design process

� Rapid design iterations

� Visualization of filter characteristics



Challenges: Fixed-Point Design

� Dynamic analysis of data range

� Finite word length = quantization error

� Overflow (overload distortion)

� Underflow (granular noise)
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� Underflow (granular noise)

� Algorithms supporting fixed-point data type

s … 32 16 8 4 2 1 1/2 1/4 1/8 1/16 1/32 …

7+1=8: 7 bit word length & 5 fractional 

bits Range =[-4 3.9688) Step = 1/32

7+1=8 bit: 7 word length & 1 fractional bit   

Range =[-64 63.5) Step =1/2



MATLAB for Fixed-Point

� Represent fixed-point data type

� Analyze quantization effects

� Built-in logging and visualizations

Accelerate execution of fixed-point code
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� Accelerate execution of fixed-point code

� System objects for more fixed-point functions



New in R2010a: System Objects

� MATLAB objects that represent time-based and data-driven 

algorithms, sources, and sinks

� System objects enable streaming in MATLAB

Support of fixed-point data type and automatic C code 
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� Support of fixed-point data type and automatic C code 

generation

� Made available by:

� Signal Processing Blockset

� Video and Image Processing Blockset

� Communication Blockset



Work on all the 

data at once…

MATLAB is Best at Batch Processing

All the data
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Deliver all at once



Many Systems Demand Stream Processing

� All the data is not available at once
Incremental 

delivery

All the data
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� All the data is not available at once

� Limited memory footprint

� Real-time requirements

� Typical applications

� Communications simulation

� Audio / video processing

� Data acquisition

delivery



Example: Filtering of an Audio Stream

filename = 'dspafxf_8000.wav';

[audio Fs] = wavread(filename);

filt = fir1(40, 0.8, 'high');

audiofilt = filter(filt,1,audio);

wavplay(audiofilt,Fs);
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wavplay(audiofilt,Fs);



Filtering in MATLAB

filename = ‘music.wav';

[audio Fs] = wavread(filename);

filt = fir1(40, 0.8, 'high');

audiofilt = filter(filt,1,audio);

wavplay(audiofilt,Fs);

Loads entire dataset 

into workspace

“audio” data uses more 

space than needed 
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Must wait for all data 

to be processed 

before listening to 

results

Overall, code uses several 

copies of the audio dataset 

in memory

wavplay(audiofilt,Fs);
space than needed 

(double vs. uint16)



Stream Processing in MATLAB Today

%% Streaming the MATLAB way

% set up initializations

filename = ‘music.wav';

Fs = 8000;

info = mmfileinfo(filename);

num_samples = info.Duration*Fs;

frame_size = 40;

Explicit state management 

requires programmer to 

manage details that 
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frame_size = 40;

bLP = fir1(12, 0.8, ‘low');

zLP = zeros(1,numel(bLP)-1);

output = zeros(1,num_samples);

%% Processing in the loop

index= 1;

while index < (num_samples-frame_size+1)

data = wavread(filename,[index index+frame_size-1]);

[datafilt, zLP] = filter(bLP,1,data,zLP);

output(index:index+frame_size-1) = datafilt;

index = index + frame_size;

end

wavplay(output,Fs);

manage details that 

should be implicit

Indexing is tedious and 

error prone

Need to maintain output buffer 
because wavplay requires all 

data before being called



%% Streaming with System Objects 

% set up initializations

filename = ‘music.wav';

hFilter = dsp.DigitalFilter;

hFilter.TransferFunction = 'FIR (all zeros)';

hFilter.Numerator = fir1(12, 0.8, ‘low');

hAudioSource = dsp.AudioFileReader(filename,  ...

Stream Filtering with System Objects

Initialize objects 

before use 
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hAudioSource = dsp.AudioFileReader(filename,  ...

'SamplesPerFrame',40, 'OutputDataType','double');

hAudioOut = dsp.AudioPlayer('SampleRate', 11050);

%% Processing in the loop

while ~isDone(hAudioSource)

data     = step(hAudioSource);     

datafilt = step(hFilter, data);    

step(hAudioOut, datafilt);

end

Many ways to set object 

properties

Source and FIR filter 

states are implicit

“In-the-loop” code is 

much simpler

No management of 

indexing
Audio player runs in-the-loop 

with the current frame, 

avoiding lengthy buffer



Batch Processing

� Load the entire video file and process it all at once
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Traditional Stream Processing in MATLAB

� Load a video frame and process it before moving on to 

the next frame

� Manually maintain indexing, buffering, states
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Stream Processing with System Objects

� Load a video frame and process it before moving on to 

the next frame

� Implicit indexing, buffering, handling of states
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Fixed-Point Algorithms in MATLAB

� Represent fixed-point data 

types in MATLAB as ‘fi’ objects

� Run simulation in floating-point 

or fixed-point modes using 

22

or fixed-point modes using 

data type override

� Log min, max and overflow



Takeaways: Fixed-Point System Objects

� Stream processing in MATLAB

� Easier to write and be correct the first time 

� Improves handling of large data sets

� Fixed-point modeling

23

� Fixed-point modeling

� All relevant objects support fixed-point data types

� Compatible with Fixed-Point Toolbox

� C-code generation

� Most objects support code generation using EMLC

� Compatible with Embedded MATLAB



Simulink for Signal Processing

� Systems with complex timing 

� System-level simulation

� … and more
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Simulink for Signal Processing: What’s New

� Mixed-signal systems with complex timing 

� System-level simulation including RF

� … and more
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Challenges: Mixed-Signal Systems

� Anticipate physical constraints
� Analog and digital electronics

� Complex timing:
� Continuous and discrete timing
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� Continuous and discrete timing

� Feedback loops

� Threshold crossing

� Asynchronous behavior

� Concurrent paths



Mixed-Signal Modeling with Simulink

� Design embedded systems:
� Use the most suitable 

modeling approach

� Anticipate physical 
impairments (mixed-signal)
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impairments (mixed-signal)

� Define the system architecture

� Verify embedded systems:
� Analyze close-loop behavior



Takeaways: Mixed-Signal Simulation

� Simulation of continuous and 
discrete signals

� Multi-rate digital signals with 
arbitrary sample rates
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arbitrary sample rates

� Complex timing
� Built-in notion of concurrency 

� Detect zero-crossings and 
discontinuities

� Enable feedback loops

� Asynchronously triggered blocks

� Share the MATLAB workspace



Challenges: RF System-Level Simulation

� Model RF front-ends:
� Without being an expert

� With acceptable simulation speed

� Integrate baseband and RF simulation
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� Integrate baseband and RF simulation
� Develop a system-level view 



New in R2010b: SimRF

� Circuit envelope analysis
� Multi-carrier systems and arbitrary architectures

� Equivalent baseband models

Simulation 

Speed
Fidelity
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� Equivalent baseband models
� Single carrier super-heterodyne cascaded systems 

(former RF Blockset technology)

� Complex baseband models
� Mathematical analytical models



Former RF Blockset Technology
Single carrier simulation of cascaded RF systems

� Linear elements are modeled with  baseband-complex 

equivalent descriptions

� Nonlinear elements are described by means of (static) 

AM/AM – AM/PM characteristics
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AM/AM – AM/PM characteristics

� Elements are cascaded for fast single carrier simulations 

in the time domain



Modeling Paradigm: RF Blockset
From passband-real signal to baseband-complex equivalent signal

… MHz …GHz … fc

Bandwidth = 1/Ts0

Pass-band 

transfer function
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RF Blockset 

0

-0.5/Ts +0.5/Ts

Baseband-complex equivalent 

transfer function

Number of sub bands (freq. resolution)

equals length of impulse response

frequency

Baseband equivalent 

time-domain 

impulse response
time

0



New SimRF Technology
Multi-carrier simulation for arbitrary topology of RF systems

� Use circuit-envelope analysis for multi-carrier linear and 

non-linear elements
� Extend in band analysis to multiple bands

� Based on Simscape to model networks of physical 
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� Based on Simscape to model networks of physical 

components
� Possibility to build arbitrary topologies

� Possibility to probe within the network

� Enables extended interferers and spurs analysis at 
system-level



Simulation Paradigm: SimRF
Envelope analysis of the modulations centered on multiple carriers

… MHz …GHz … fc1

Circuit-envelope 

analysis

0

Complex envelope of 

modulated input signals fc2

frequency
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SimRF

analysis

Complex envelope response

around selected carrier

… MHz …GHz …

0 frequency

fc1 fc2fc2-fc1 fc2+fc1

… MHz …GHz …

frequency

fc2+fc1

0



RF Modeling with Simulink

� Design embedded systems:
� Use the best modeling approach

� Anticipate physical impairments 
(RF)

Define the system hierarchy
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� Define the system hierarchy

� Verify embedded systems:
� Analyze results in streaming 

conditions

� Evaluate system-level 
performances



Takeaways: RF Modeling with Simulink

� Complex hierarchical model 
description

� Streaming capabilities with 
frame-based processing
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frame-based processing
� Make use of MATLAB for matrix 

processing

� Use Embedded MATLAB 
� Increase expressivity

� Use of legacy-code



Design and Implement Signal Processing 

Systems with MATLAB and Simulink

� Algorithm design

� Fast simulation

� Architecture exploration

� Targeting implementation
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� Targeting implementation

� Verification and testing

� Rapid prototyping



Conclusions

� Quickly analyze and develop new algorithms with MATLAB

� Accurate system-level multi-domain analysis with Simulink
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� Accurate system-level multi-domain analysis with Simulink

� With MATLAB and Simulink you can quickly design entire 

systems with better performance


